Self-Protected FET with Temperature and Current Limit

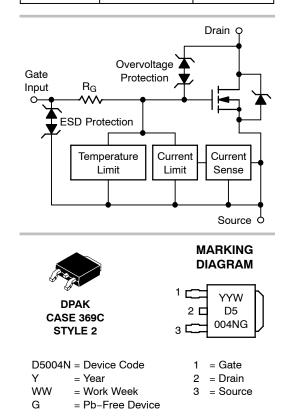
40 V, 6.5 A, Single N-Channel, DPAK

Self-protected FETs are a series of power MOSFETs which utilize ON Semiconductor HDPlus[™] technology. The self-protected MOSFET incorporates protection features such as integrated thermal and current limits. The self-protected MOSFETs include an integrated Drain-to-Gate Clamp that provides overvoltage protection from transients and avalanche. The device is protected from Electrostatic Discharge (ESD) by utilizing an integrated Gate-to-Source Clamp.

Features

- Short Circuit Protection
- In Rush Current Limit
- Thermal Shutdown with Automatic Restart
- Avalanche Rated
- Overvoltage Protection
- ESD Protection (4 kV HBM)
- Controlled Slew Rate for Low Noise Switching
- AEC Q101 Qualified
- This is a Pb–Free Device

Applications


- Solenoid Driver
- Relay Driver
- Small Motors
- Lighting
- Relay Replacement
- Load Switching

ON Semiconductor®

http://onsemi.com

V _{DSS} (Clamped)	R _{DS(on)} Typ	I _D Typ (Limited)
40 V	110 mΩ @ 10 V	6.5 A

ORDERING INFORMATION

Device	Package	Shipping [†]
NID5004NT4G	DPAK (Pb–Free)	2500/Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

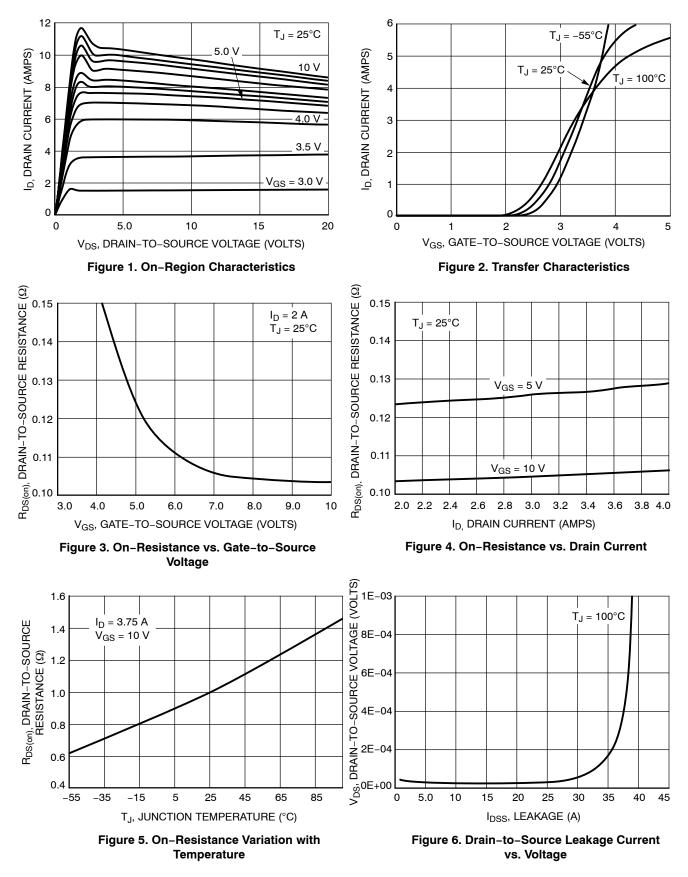
MOSFET MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

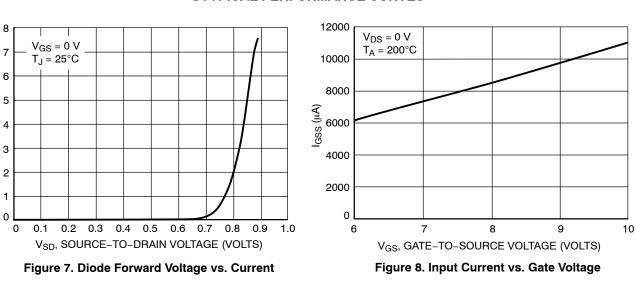
Rating	Symbol	Value	Unit	
Drain-to-Source Voltage Internally Clamped	V _{DSS}	44	Vdc	
Gate-to-Source Voltage	V _{GS}	±14	Vdc	
Drain Current Continuous	Ι _D	Internally Limited		
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1) @ $T_A = 25^{\circ}C$ (Note 2)	P _D	1.3 2.5	W	
Thermal Resistance Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	R _{θJC} R _{θJA} R _{θJA}	3.0 95 50	°C/W	
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 30 Vdc, V_{GS} = 5.0 Vdc, I _L = 1.8 Apk, L = 160 mH, R _G = 25 Ω) (Note 3)	E _{AS}	273	mJ	
Operating and Storage Temperature Range (Note 4)	T _J , T _{stg}	-55 to 150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Surface mounted onto minimum pad size (100 sq/mm) FR4 PCB, 1 oz cu.
Mounted onto 1" square pad size (700 sq/mm) FR4 PCB, 1 oz cu.
Not subject to Production Test

4. Normal pre-fault operating range. See thermal limit range conditions.


MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•	
Drain-to-Source Clamped Breakdown Voltage (V_{GS} = 0 V, I_D = 2 mA)			36	40	44	V
Zero Gate Voltage Drain Current $(V_{DS} = 32 \text{ V}, V_{GS} = 0 \text{ V})$			-	27	100	μΑ
Gate Input Current ($V_{GS} = 5.0 \text{ V}, V_{DS} = 0 \text{ V}$)			_	45	200	μΑ
ON CHARACTERISTICS						
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 150 \ \mu\text{A})$ Threshold Temperature Coeffici	ent	V _{GS(th)}	1.0 _	1.85 5.0	2.2	V -mV/°0
Static Drain-to-Source On-Re (V_{GS} = 10 V, I_D = 2.0 A, T_J @ 2		R _{DS(on)}	-	110	130	mΩ
Static Drain-to-Source On-Re $(V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}) (V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 2 (V_{GS} = 5.0 \text{ V}) (V_$	25°C)	R _{DS(on)}		130 240	150 270	mΩ
Source–Drain Forward On Volta ($I_S = 7.0 \text{ A}, V_{GS} = 0 \text{ V}$)	age	V_{SD}	_	0.9	1.1	V
SWITCHING CHARACTERIST	CS (Note 6)					
Turn-on Delay Time	$ \begin{array}{c} {\sf R}_{\sf L} = 6.6 \; \Omega, \; {\sf V}_{in} = 0 \; \text{to} \; 10 \; {\sf V}, \\ {\sf V}_{\sf DD} = 13.8 \; {\sf V}, \; {\sf I}_{\sf D} = 2.0 \; {\sf A}, \; 10\% \; {\sf V}_{in} \; \text{to} \; 10\% \; {\sf I}_{\sf D} \end{array} $	td _(on)	-	97	115	ns
Turn-on Rise Time	$ \begin{array}{c} {\sf R}_{\sf L} = 6.6 \ \Omega, \ {\sf V}_{\sf in} = 0 \ {\sf to} \ 10 \ {\sf V}, \\ {\sf V}_{\sf DD} = 13.8 \ {\sf V}, \ {\sf I}_{\sf D} = 2.0 \ {\sf A}, \ 10\% \ {\sf I}_{\sf D} \ {\sf to} \ 90\% \ {\sf I}_{\sf D} \end{array} $	t _{rise}	-	282	300	ns
Turn-off Delay Time	$ \begin{array}{l} {\sf R}_{\sf L} = 6.6 \; \Omega, \; {\sf V}_{in} = 0 \; to \; 10 \; {\sf V}, \\ {\sf V}_{\sf DD} = 13.8 \; {\sf V}, \; {\sf I}_{\sf D} = 2.0 \; {\sf A}, \; 90\% \; {\sf V}_{in} \; to \; 90\% \; {\sf I}_{\sf D} \end{array} $	td _(off)	-	930	1020	ns
Turn-off Fall Time	R_L = 6.6 $\Omega,$ V_{in} = 0 to 10 V, V_{DD} = 13.8 V, I_D = 2.0 A, 90% I_D to 10% I_D	t _{fall}	-	690	750	ns
Slew Rate ON	R _L = 6.6 Ω, V _{in} = 0 to 10 V, V _{DD} = 13.8 V, I _D = 2.0 A, 70% to 50% V _{DD}	$\mathrm{dV}_{\mathrm{DS}}/\mathrm{dT}_{\mathrm{on}}$	-	64	-	V/μs
Slew Rate OFF	R_L = 6.6 Ω, V _{in} = 0 to 10 V, V _{DD} = 13.8 V, I _D = 2.0 A, 50% to 70% V _{DD}	dV_{DS}/dT_{off}	-	28	-	V/μs
SELF PROTECTION CHARACT	TERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (Note	e 7)				
$ \begin{array}{lll} \mbox{Current Limit} & \mbox{V}_{DS} = 10 \mbox{ V}, \mbox{V}_{GS} = 5.0 \mbox{ V}, \mbox{T}_{J} = 25^{\circ}\mbox{C} \mbox{ (Note 8)} \\ \mbox{V}_{DS} = 10 \mbox{ V}, \mbox{V}_{GS} = 5.0 \mbox{ V}, \mbox{T}_{J} = 100^{\circ}\mbox{C} \mbox{ (Note 6, 8)} \\ \mbox{V}_{DS} = 10 \mbox{ V}, \mbox{V}_{GS} = 10 \mbox{ V}, \mbox{T}_{J} = 25^{\circ}\mbox{C} \mbox{ (Note 6, 8)} \\ \end{array} $		I _{LIM}	4.0 4.0 -	6.5 5.5 7.9	11 11 -	A
Temperature Limit (Turn-off)	V _{GS} = 5.0 V (Note 6)	T _{LIM(off)}	150	180	200	°C
Thermal Hysteresis $V_{GS} = 5.0 V$		$\Delta T_{LIM(on)}$	-	10	-	°C
Temperature Limit (Turn-off) V _{GS} = 10 V (Note 6)		T _{LIM(off)}	150	180	200	°C
Thermal Hysteresis V _{GS} = 10 V		$\Delta T_{LIM(on)}$	_	20	-	°C
$ \begin{array}{ll} \mbox{Input Current during} \\ \mbox{Thermal Fault} \end{array} & V_{DS} = 0 \ V, \ V_{GS} = 5.0 \ V, \ T_J = T_J > T_{(fault)} \ (Note \ 6) \\ \ V_{DS} = 0 \ V, \ V_{GS} = 10 \ V, \ T_J = T_J > T_{(fault)} \ (Note \ 6) \\ \end{array} $		I _{g(fault)}	5.5 12	5.2 11	-	mA
ESD ELECTRICAL CHARACTE	RISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)					
Electrostatic Discharge Capabil	ity.	ESD				V

Electrostatic Discharge Capability	ESD				V	
Human Body Model (HBM)		4000	-	-		
Machine Model (MM) (Note 6)		400	-	-		
						_

5. Pulse Test: Pulse Width ≤300 μs, Duty Cycle ≤ 2%.
6. Not subject to Production Test
7. Fault conditions are viewed as beyond the normal operating range of the part.
8. Current limit measured at 380 μs after gate pulse.

TYPICAL PERFORMANCE CURVES

Is, SOURCE CURRENT (AMPS)

zl TYPICAL PERFORMANCE CURVES

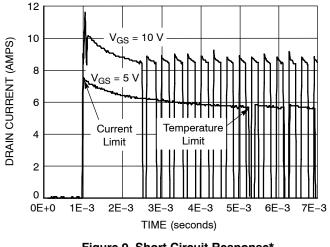
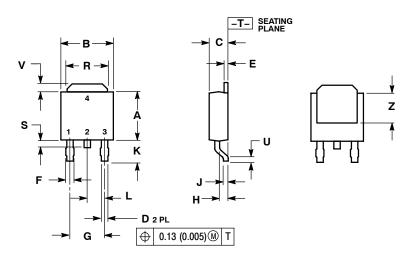
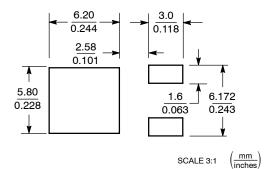



Figure 9. Short Circuit Response*

*(Actual thermal cycling response in short circuit dependent on device power level, thermal mounting, and ambient temperature conditions)

PACKAGE DIMENSIONS

DPAK CASE 369C-01 **ISSUE O**


	INC	INCHES N		IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	BSC	4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
К	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29 BSC	
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
V	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 2:

PIN 1. GATE 2. DRAIN 3. SOURCE

4. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

HDPlus is a trademark of Semiconductor Components Industries, LLC (SCILLC)

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative